Lesson plan

Name if the faculty	:	Mr. Himanshu Kaushik
Discipline	:	Computer Science Engineering
Semester	:	5 th
Subject	:	Computer Graphics
Lesson Plan Duration	:	15 weeks (From August, 2018 to November 2018)

Work Load (Lecture/ Practical) per week (in hours): Lecture-04, Practical-02

Week		Theory		Practical		
	Lecture day	Topic(Including assignment/test)	Practical Day	Topic		
1 st	1 st	Introduction to Computer Graphics	1 st			
1	2^{nd}	What is Computer Graphics		Write a program for 2D line drawing as Raster Graphics		
	3^{rd}	Computer Graphics Applications				
	4 th	Computer Graphics Hardware and software	_	Display		
2 nd	1 st	Two dimensional Graphics Primitives	2^{nd}	Write a program for circle		
	2^{nd}	Points and Lines		drawing as Raster Graphics		
	3 rd	Line drawing algorithms		Display		
	4^{th}	DDA				
3^{rd}	1^{st}	Bresenham's	3 rd			
	2^{nd}	Circle drawing algorithms		Write a program for circle		
	3 rd	Using polar coordinates		drawing as Raster Graphics Display		
	4^{th}	Bresenham"s circle drawing		Display		
4^{th}	1^{st}	mid point circle drawing algorithm	4^{th}			
	2^{nd}	Filled area algorithms	1	Write a program for polygon		
	3 rd	Scanline		filling as Raster Graphics Display		
	4^{th}	Polygon filling algorithm		Display		
5^{th}	1^{st}	boundary filled algorithm	5 th			
	2^{nd}	Revision of 1st unit with test		Write a program for polygon		
	3 rd	Two/Three Dimensional Viewing		filling as Raster Graphics Display		
	4 th	The 2-D viewing pipeline		Display		
6 th	1 st	windows, viewports	6 th	Write a program for line clipping.		
	2 nd	window to view port mapping				
	3 rd					

		Clipping: point, clipping line (algorithms)		
	4 th		-	
7 th	1 st	4 bit code algorithm	7 th	
/		Sutherland-cohen algorithm	_ ′	Write a program for polygon
	2^{nd}	parametric line clipping algorithm (Cyrus Beck)		clipping
	3 rd 4 th	Polygon clipping algorithm	_	
		Sutherland-Hodgeman polygon clipping algorithm		
8 th	1^{st}	Two dimensional transformations	8 th	Write a program for
	2^{nd}		_	Write a program for displaying 3D objects as 2D
		transformations	_	display using perspective
	3 rd	translation		transformation
	4^{th}	1		
9 th	1 st	scaling	9 th	
		rotation, reflection	-	Write a program for
	2^{nd}	composite transformation		displaying 3D objects as 2D display using perspective
	3^{rd}	Revision of 2nd unit with test		transformation
	4 th	Three-dimensional transformations	-	
10^{th}	1^{st}	Three dimensional graphics concept	10^{th}	Write a program for
	2^{nd}		-	displaying 3D objects as 2D
		Matrix representation of 3-D Transformations		display using perspective transformation
	3 rd		_	
	4 th	Composition of 3-D transformation	-	
	-	Projections		
11 th	1^{st}	types of projections	11^{th}	Write a program for rotation
	2^{nd}		-	of a 3D object about
		the mathematics of planner geometric projections		arbitrary axis
	3 rd		-	
	4 th	coordinate systems	-	
		Introduction to hidden surface removal		
12 th	1 st	The Z- buffer algorithm	12 th	Write a program for rotation
	2^{nd}			of a 3D object about

	3 rd 4 th	scanline algorithmarea sub-divisionalgorithmRevision of 3rd unit with test	-	arbitrary axis
13 th	$ \begin{array}{c} 1^{\text{st}} \\ 2^{\text{nd}} \\ 3^{\text{rd}} \\ 4^{\text{th}} \end{array} $	Parametric representation of curves Bezier curves B-Spline curves Parametric representation of surfaces	13 th	Write a program for Hidden surface removal from a 3D object
14 th	$\frac{1^{\text{st}}}{2^{\text{nd}}}$ 3^{rd} 4^{th}	shading, image manipulationIllumination models, shading models for polygonsshadows, transparency. What is an image? Filtering, image processing, geometric transformation of images.Revision of 4th unit with test	14 th	Write a program for Hidden surface removal from a 3D object